Product Gaussian quadrature on circular lunes
نویسندگان
چکیده
Resorting to recent results on subperiodic trigonometric quadrature, we provide three product Gaussian quadrature formulas exact on algebraic polynomials of degree n on circular lunes. The first works on any lune, and has n+O(n) cardinality. The other two have restrictions on the lune angular intervals, but their cardinality is n/2 +O(n). 2000 AMS subject classification: 65D32.
منابع مشابه
Trigonometric Gaussian quadrature on subintervals of the period
We construct a quadrature formula with n+ 1 angles and positive weights, exact in the (2n+1)-dimensional space of trigonometric polynomials of degree ≤ n on intervals with length smaller than 2π. We apply the formula to the construction of product Gaussian quadrature rules on circular sectors, zones, segments and lenses. 2000 AMS subject classification: 65D32.
متن کاملError Bound of Certain Gaussian Quadrature Rules for Trigonometric Polynomials
In this paper we give error bound for quadrature rules of Gaussian type for trigonometric polynomials with respect to the weight function w(x) = 1+cosx, x ∈ (−π, π), for 2π-periodic integrand, analytic in a circular domain. Obtained theoretical bound is checked and illustrated on some numerical examples.
متن کاملPolynomial fitting and interpolation on circular sections
We construct Weakly Admissible polynomial Meshes (WAMs) on circular sections, such as symmetric and asymmetric circular sectors, circular segments, zones, lenses and lunes. The construction resorts to recent results on subperiodic trigonometric interpolation. The paper is accompanied by a software package to perform polynomial fitting and interpolation at discrete extremal sets on such regions....
متن کاملA Survey of Gauss-Christoffel Quadrature Formulae
4. 4.1. 4.1.1. 4.1.2. 4.1.3. 4.2. 4.3. Gaussian quadrature with preassigned nodes Christoffel's work and related developments Kronrod's extension of quadrature rules Gaussian quadrature with multiple nodes The quadrature formula of Turan Arbitrary multiplicities and preassigned nodes Power-orthogonal polynomials Constructive aspects and applications Further miscellaneous extensions Product-type...
متن کاملPerformance Analysis of an Optimal Circular 16-QAM for Wavelet Based OFDM Systems
The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determi...
متن کامل